GMH für das rotierende Equipment
Schon immer war die betriebssichere Pumpe, der zuverlässige Kompressor, die langfristig verfügbare Lüftungsanlage ein zentrales Auswahlkriterium der Betreiber. Die Technik des rotierenden Equipments selbst ist heute weitgehend ausgereift. Werden die Maschinen bestimmungsgemäß eingesetzt, haben sie eine zu erwartende Lebensdauer von mehreren Jahren. Solche Maschinen fallen daher meist durch Störungen oder Abweichungen im Betrieb der Gesamtanlage aus. Gefordert ist also eine Lösung, mit der solche Störungen frühzeitig erkannt werden.
Aus „Big Data“ durch Analyse und Mustererkennung „Smart Data“ generieren: Es ist eines der ganz großen Versprechen der digitalen Transformation. Das gelingt in Sachen Instandhaltung sehr gut über das langfristige Erfassen von relevanten Daten (Temperaturen, Drücke, Volumenströme) und deren Analyse (Trends, Abweichungen). Massiv gefallene Preise der immer leis-tungsfähiger werdenden Sensoren unterstützen dies. Data Mining versucht dann, mithilfe anspruchsvoller statistischer und mathematischer Verfahren bzw. Algorithmen verborgene Muster, Trends und Zusammenhänge in großen Datenmengen zu erkennen.
Die Crux ist bis heute, dass smarte Feldgeräte wie Pumpen, Kompressoren und Ventilatoren zwar mit dem zentralen Gebäude- oder Prozessleitsystem kommunizieren, aber die fleißig gesammelten Massendaten aufgrund von Sicherheitsbedenken und wegen technischer Hürden vielfach nur zur nachträglichen Fehleranalyse genutzt werden. Experten schätzen, dass 97 % der Daten aus der Feldebene ungenutzt bleiben.
Die Herausforderung ist, an diese Daten ranzukommen. Heute stehen dazu sehr leistungsfähige Echtzeit-Bus-Systeme wie das „Industrial“-Ethernet und Cloudanbindungen bereit. Eine datenbasierte Verzahnung der Bereiche Produktion und Instandhaltung ist somit möglich. Sehr anschaulich sprechen Experten von einem ‚Langzeit-EKG‘.
Grundfos greift mit seinem „Machine Health“-Konzept (GMH) auf eine der weltweit größten Datenbanken für typische Maschinengeräusche bzw. Vibrationsprofile zu, mit deren Hilfe äußerst präzise Diagnosen möglich sind. Damit werden aus Maschinendaten Handlungsempfehlungen – dank Echtzeit-Meldungen und Algorithmen, die geeignete Reparaturen und Wartungsmaßnahmen vorschlagen. Hochwertige Sensoren und smarte Algorithmen überwachen kritische Aggregate rund um die Uhr. Schon beim ersten Anzeichen eines Problems meldet sich das System mit einer detaillierten Analyse inklusive einer erfolgversprechenden Lösung für das sich anbahnende Problem. Der Betreiber kann Wartungsmaßnahmen gezielt terminieren (wann es vom Betriebsablauf her am besten passt), er spart Kosten und vermeidet teure Ausfälle. Das Ergebnis ist überzeugend: In der Praxis ergeben sich 30 % geringere Wartungskosten, 90 % niedrigere Reparaturkosten, 75 % weniger Ausfälle und eine um 45 % länger verfügbare Betriebszeit.
Eine Besonderheit von GMH ist, dass die genutzte Datenbank schon kurz nach der Installation der Sensoren und Empfänger Aussagen über den Zustand der Anlage treffen kann – die Algorithmen der Künstlichen Intelligenz (KI) müssen also nicht ,wie sonst oft üblich, erst angelernt werden; Tausende von hinterlegten Geräusch- und Vibrationsmustern können sofort mit den installierten Maschinen verglichen werden.
GMH gewährt dem Betreiber sozusagen einen Blick in die nahe Zukunft – damit wandelt sich Instandhaltung zum Asset Management, vom Kostenblock zur Werterhaltung. Darüber hinaus offeriert das Unternehmen die erforderlichen Dienstleistungen, um schlechte Akteure wieder auf Vordermann zu bringen.